GPT4Free

G4F - Client API Guide

Table of Contents

Introduction

Welcome to the G4F Client API, a cutting-edge tool for seamlessly integrating advanced AI capabilities into your Python applications. This guide is designed to facilitate your transition from using the OpenAI client to the G4F Client, offering enhanced features while maintaining compatibility with the existing OpenAI API.


Getting Started

Switching to G4F Client

To begin using the G4F Client, simply update your import statement in your Python code:

Old Import:

from openai import OpenAI

New Import:

from g4f.client import Client as OpenAI

The G4F Client preserves the same familiar API interface as OpenAI, ensuring a smooth transition process.


Initializing the Client

To utilize the G4F Client, create a new instance. Below is an example showcasing custom providers:

from g4f.client import Client
from g4f.Provider import BingCreateImages, OpenaiChat, Gemini

client = Client(
    provider=OpenaiChat,
    image_provider=Gemini,
    # Add any other necessary parameters
)

Creating Chat Completions

Here’s an improved example of creating chat completions:

response = client.chat.completions.create(
    model="gpt-4o-mini",
    messages=[
        {
            "role": "user",
            "content": "Say this is a test"
        }
    ]
    # Add any other necessary parameters
)

This example:

You can adjust these parameters based on your specific needs.

Configuration

You can set an api_key for your provider in the client and define a proxy for all outgoing requests:

from g4f.client import Client

client = Client(
    api_key="your_api_key_here",
    proxies="http://user:pass@host",
    # Add any other necessary parameters
)

Explanation of Parameters

When using the G4F to create chat completions or perform related tasks, you can configure the following parameters:

Providers Limitation

The web_search argument is limited to specific providers, including:

If your chosen provider does not support web_search, it will not function as expected.

Alternative Solution:
Instead of relying on the web_search argument, you can use the more versatile Search Tool Support, which allows for highly customizable web search operations. The search tool enables you to define parameters such as query, number of results, word limit, and timeout, offering greater control over search capabilities.


Usage Examples

Text Completions

Generate text completions using the ChatCompletions endpoint:

from g4f.client import Client

client = Client()

response = client.chat.completions.create(
    model="gpt-4o-mini",
    messages=[
        {
            "role": "user",
            "content": "Say this is a test"
        }
    ],
    web_search = False
)

print(response.choices[0].message.content)

Streaming Completions

Process responses incrementally as they are generated:

from g4f.client import Client

client = Client()

stream = client.chat.completions.create(
    model="gpt-4",
    messages=[
        {
            "role": "user",
            "content": "Say this is a test"
        }
    ],
    stream=True,
    web_search = False
)

for chunk in stream:
    if chunk.choices[0].delta.content:
        print(chunk.choices[0].delta.content or "", end="")

Using a Vision Model

Analyze an image and generate a description:

import g4f
import requests

from g4f.client import Client
from g4f.Provider.GeminiPro import GeminiPro

# Initialize the GPT client with the desired provider and api key
client = Client(
    api_key="your_api_key_here",
    provider=GeminiPro
)

image = requests.get("https://raw.githubusercontent.com/xtekky/gpt4free/refs/heads/main/docs/images/cat.jpeg", stream=True).raw
# Or: image = open("docs/images/cat.jpeg", "rb")

response = client.chat.completions.create(
    model=g4f.models.default,
    messages=[
        {
            "role": "user",
            "content": "What's in this image?"
        }
    ],
    image=image
    # Add any other necessary parameters
)

print(response.choices[0].message.content)

Image Generation

The response_format parameter is optional and can have the following values:

Generate images using a specified prompt:

from g4f.client import Client

client = Client()

response = client.images.generate(
    model="flux",
    prompt="a white siamese cat",
    response_format="url"
    # Add any other necessary parameters
)

image_url = response.data[0].url

print(f"Generated image URL: {image_url}")

Base64 Response Format

from g4f.client import Client

client = Client()

response = client.images.generate(
    model="flux",
    prompt="a white siamese cat",
    response_format="b64_json"
    # Add any other necessary parameters
)

base64_text = response.data[0].b64_json
print(base64_text)

Creating Image Variations

Create variations of an existing image:

from g4f.client import Client
from g4f.Provider import OpenaiChat

client = Client(
    image_provider=OpenaiChat
)

response = client.images.create_variation(
    image=open("docs/images/cat.jpg", "rb"),
    model="dall-e-3",
    # Add any other necessary parameters
)

image_url = response.data[0].url

print(f"Generated image URL: {image_url}")

Advanced Usage

Conversation Memory

To maintain a coherent conversation, it’s important to store the context or history of the dialogue. This can be achieved by appending both the user’s inputs and the bot’s responses to a messages list. This allows the model to reference past exchanges when generating responses.

The conversation history consists of messages with different roles:

The following example demonstrates how to implement conversation memory with the G4F:

from g4f.client import Client

class Conversation:
    def __init__(self):
        self.client = Client()
        self.history = [
            {
                "role": "system",
                "content": "You are a helpful assistant."
            }
        ]
    
    def add_message(self, role, content):
        self.history.append({
            "role": role,
            "content": content
        })
    
    def get_response(self, user_message):
        # Add user message to history
        self.add_message("user", user_message)
        
        # Get response from AI
        response = self.client.chat.completions.create(
            model="gpt-4o-mini",
            messages=self.history,
            web_search=False
        )
        
        # Add AI response to history
        assistant_response = response.choices[0].message.content
        self.add_message("assistant", assistant_response)
        
        return assistant_response

def main():
    conversation = Conversation()
    
    print("=" * 50)
    print("G4F Chat started (type 'exit' to end)".center(50))
    print("=" * 50)
    print("\nAI: Hello! How can I assist you today?")
    
    while True:
        user_input = input("\nYou: ")
        
        if user_input.lower() == 'exit':
            print("\nGoodbye!")
            break
            
        response = conversation.get_response(user_input)
        print("\nAI:", response)

if __name__ == "__main__":
    main()

Key Features:

Usage Example:

conversation = Conversation()
response = conversation.get_response("Hello, how are you?")
print(response)

Note: The conversation history grows with each interaction. For long conversations, you might want to implement a method to limit the history size or clear old messages to manage token usage.


Search Tool Support

The Search Tool Support feature enables triggering a web search during chat completions. This is useful for retrieving real-time or specific data, offering a more flexible solution than web_search.

Example Usage:

from g4f.client import Client

client = Client()

tool_calls = [
    {
        "function": {
            "arguments": {
                "query": "Latest advancements in AI",
                "max_results": 5,
                "max_words": 2500,
                "backend": "auto",
                "add_text": True,
                "timeout": 5
            },
            "name": "search_tool"
        },
        "type": "function"
    }
]

response = client.chat.completions.create(
    model="gpt-4",
    messages=[
        {"role": "user", "content": "Tell me about recent advancements in AI."}
    ],
    tool_calls=tool_calls
)

print(response.choices[0].message.content)

Parameters for search_tool:

Advantages of Search Tool Support:


Using a List of Providers with RetryProvider

from g4f.client import Client
from g4f.Provider import RetryProvider, Phind, FreeChatgpt, Liaobots
import g4f.debug

g4f.debug.logging = True
g4f.debug.version_check = False

client = Client(
    provider=RetryProvider([Phind, FreeChatgpt, Liaobots], shuffle=False)
)

response = client.chat.completions.create(
    model="",
    messages=[
        {
            "role": "user",
            "content": "Hello"
        }
    ]
)

print(response.choices[0].message.content)

Command-line Chat Program

Here’s an example of a simple command-line chat program using the G4F Client:

import g4f
from g4f.client import Client

# Initialize the GPT client with the desired provider
client = Client()

# Initialize an empty conversation history
messages = []

while True:
    # Get user input
    user_input = input("You: ")

    # Check if the user wants to exit the chat
    if user_input.lower() == "exit":
        print("Exiting chat...")
        break  # Exit the loop to end the conversation

    # Update the conversation history with the user's message
    messages.append({"role": "user", "content": user_input})

    try:
        # Get GPT's response
        response = client.chat.completions.create(
            messages=messages,
            model=g4f.models.default,
        )

        # Extract the GPT response and print it
        gpt_response = response.choices[0].message.content
        print(f"Bot: {gpt_response}")

        # Update the conversation history with GPT's response
        messages.append({"role": "assistant", "content": gpt_response})

    except Exception as e:
        print(f"An error occurred: {e}")

This guide provides a comprehensive overview of the G4F Client API, demonstrating its versatility in handling various AI tasks, from text generation to image analysis and creation. By leveraging these features, you can build powerful and responsive applications that harness the capabilities of advanced AI models.


Return to Documentation