This document outlines how to use the G4F (Generative Framework) library to generate and process various media types, including audio, images, and videos.
G4F supports audio generation through providers like PollinationsAI and audio transcription using providers like Microsoft_Phi_4.
import asyncio
from g4f.client import AsyncClient
import g4f.Provider
async def main():
client = AsyncClient(provider=g4f.Provider.PollinationsAI)
response = await client.chat.completions.create(
model="openai-audio",
messages=[{"role": "user", "content": "Say good day to the world"}],
audio={"voice": "alloy", "format": "mp3"},
)
response.choices[0].message.save("alloy.mp3")
asyncio.run(main())
Some providers in G4F support audio inputs in chat completions, allowing you to transcribe audio files by instructing the model accordingly. This example demonstrates how to use the AsyncClient
to transcribe an audio file asynchronously:
import asyncio
from g4f.client import AsyncClient
import g4f.Provider
async def main():
client = AsyncClient(provider=g4f.Provider.Microsoft_Phi_4)
with open("audio.wav", "rb") as audio_file:
response = await client.chat.completions.create(
messages="Transcribe this audio",
media=[[audio_file, "audio.wav"]],
modalities=["text"],
)
print(response.choices[0].message.content)
if __name__ == "__main__":
asyncio.run(main())
AsyncClient
instance is created with a provider that supports audio inputs, such as PollinationsAI
or Microsoft_Phi_4
.audio.wav
) is opened in binary read mode ("rb"
) using a context manager (with
statement) to ensure proper file closure after use.chat.completions.create
method is called with:
messages
: Containing a user message instructing the model to transcribe the audio.media
: A list of lists, where each inner list contains the file object and its name ([[audio_file, "audio.wav"]]
).modalities=["text"]
: Specifies that the output should be text (the transcription).response.choices[0].message.content
and printed.PollinationsAI
or Microsoft_Phi_4
) supports audio inputs in chat completions. Not all providers may offer this functionality."audio.wav"
with the path to your own audio file. The file format (e.g., WAV) should be compatible with the provider.g4f.models.default
does not support audio transcription, you may need to specify a model that does (consult the provider’s documentation for supported models).This example complements the guide by showcasing how to handle audio inputs asynchronously, expanding on the multimodal capabilities of the G4F AsyncClient API.
G4F can generate images from text prompts and provides options to retrieve images as URLs or base64-encoded strings.
import asyncio
from g4f.client import AsyncClient
async def main():
client = AsyncClient()
response = await client.images.generate(
prompt="a white siamese cat",
model="flux",
response_format="url",
)
image_url = response.data[0].url
print(f"Generated image URL: {image_url}")
asyncio.run(main())
import asyncio
from g4f.client import AsyncClient
async def main():
client = AsyncClient()
response = await client.images.generate(
prompt="a white siamese cat",
model="flux",
response_format="b64_json",
)
base64_text = response.data[0].b64_json
print(base64_text)
asyncio.run(main())
width
: Defines the width of the generated image.height
: Defines the height of the generated image.n
: Specifies the number of images to generate.response_format
: Specifies the format of the response:
"url"
: Returns the URL of the image."b64_json"
: Returns the image as a base64-encoded JSON string.import asyncio
from g4f.client import AsyncClient
async def main():
client = AsyncClient()
response = await client.images.generate(
prompt="a white siamese cat",
model="flux",
response_format="url",
width=512,
height=512,
n=2,
)
for image in response.data:
print(f"Generated image URL: {image.url}")
asyncio.run(main())
You can generate variations of an existing image using G4F.
import asyncio
from g4f.client import AsyncClient
from g4f.Provider import OpenaiChat
async def main():
client = AsyncClient(image_provider=OpenaiChat)
response = await client.images.create_variation(
prompt="a white siamese cat",
image=open("docs/images/cat.jpg", "rb"),
model="dall-e-3",
)
image_url = response.data[0].url
print(f"Generated image URL: {image_url}")
asyncio.run(main())
G4F supports video generation through providers like HuggingFaceMedia.
import asyncio
from g4f.client import AsyncClient
from g4f.Provider import HuggingFaceMedia
async def main():
client = AsyncClient(
provider=HuggingFaceMedia,
api_key=os.getenv("HF_TOKEN") # Your API key here
)
video_models = client.models.get_video()
print("Available Video Models:", video_models)
result = await client.media.generate(
model=video_models[0],
prompt="G4F AI technology is the best in the world.",
response_format="url",
)
print("Generated Video URL:", result.data[0].url)
asyncio.run(main())
resolution
: Specifies the resolution of the generated video. Options include:
"480p"
(default)"720p"
aspect_ratio
: Defines the width-to-height ratio (e.g., "16:9"
).n
: Specifies the number of videos to generate.response_format
: Specifies the format of the response:
"url"
: Returns the URL of the video."b64_json"
: Returns the video as a base64-encoded JSON string.import os
import asyncio
from g4f.client import AsyncClient
from g4f.Provider import HuggingFaceMedia
async def main():
client = AsyncClient(
provider=HuggingFaceMedia,
api_key=os.getenv("HF_TOKEN") # Your API key here
)
video_models = client.models.get_video()
print("Available Video Models:", video_models)
result = await client.media.generate(
model=video_models[0],
prompt="G4F AI technology is the best in the world.",
resolution="720p",
aspect_ratio="16:9",
n=1,
response_format="url",
)
print("Generated Video URL:", result.data[0].url)
asyncio.run(main())
Key Points:
response_format
to control the output format (URL, base64, local file).width
, height
, resolution
, aspect_ratio
, and n
to customize the generated media.